

Program Print Sponsor:

(Cr

CARPENTERIA CORSI srl

Conference Delegate

Bag Sponsor:

Technip

Speaker Gift Sponsor:

walter tosto 🛞

Technical Program Sponsor:

KBR TECHNOLOGY

Conference Lanyard Sponsor:

Refining Track Sponsor:

Conference Host:

Advanced Techniques for Enhancing Hydrogen Availability in Refineries

Sanjiv RATAN, Group DVP, H2 Product-line & Technologies Technip Stone & Webster Process Technology

Nitin PATEL, Sr. Engineering Associate H2-Syngas Technology, Air Products and Chemicals

take it further.

- Global Hydrogen (H₂) demand projections
- Ways to enhance H₂ Availability
 - Advanced Hydrogen Management
 - Step capacity Revamping & Feed switching to NG
 - Mega H₂ concept
 - Make v/s Buy
 - Reliability Enhancement
- Conclusions

- Global Hydrogen (H₂) demand projections
- Ways to enhance H₂ Availability
 - Advanced Hydrogen Management
 - Step capacity Revamping & Feed switching to NG
 - Mega H₂ concept
 - Make v/s Buy
 - Reliability Enhancement
- Conclusions

Drivers for Refinery Hydrogen

- Volume growth
 - Global fuels demand growth + clean fuels catch-up
 - Increasing proportions of 'Opportunity and/or Unconventional' crudes
 - Bottom-of-the barrel strategies
- Economies of scale
- Multi-client hydrogen franchise networks
- Hydrogen considered as an asset in refinery
 - Optimization and not minimization of hydrogen usage
 - Focus on 'operating margins' rather than 'operating costs'

Mega H₂ plant typically ranges 100 - 250 kNm3/h in a single train

"Refinery Hy-way" Intensification

Global Refinery Hydrogen Demand Growth

Year ->	2001	2011	2021
Global H2 Demand, (Captive; On-purpose) BCFD	12.8	18.5	26.5
North America:	4.7	5.8	7.1
Western Europe	3.1	3.2	3.7
Asia/Pacific:	3.0	5.7	9.6
- China	0.6	1.8	3.7
- India	0.3	9.9	1.7
- Japan	1.0	1.0	1.0
- Other Asia/Pacific	1.1	2.1	3.2
Other Regions (SA, ME, AFR)	2.0	3.8	6.1
% growth (2011 – 2021) Global		~ 4	%
India + China		~ 7	%
Global H ₂ growth (2011-2021) : Captive + 20% Merchant		10 b	ocfd
Average bcfd/yr		~	1

Refinery Hydrogen: Asian Trends & Needs

• Technical

- Larger plant capacities
- Catch-up against US & Euro norms
- Lack of NG : Multiple / Liquid feedstocks flexibility
- Power (un)reliability
- Increasing HSE requirements and CO₂ focus
- Need for enhanced RAM (Reliability, Availability and Maintenance)

Commercial

- Higher demand growth v/s domestic crude scarcity
- Product slate and demand pattern; Diesel v/s Gasoline
- Lower cost of ownership for H₂ critical for refinery profitability
- Larger domestic portion in execution of projects (materials and labour)

Technip Catering for Hydrogen Demand

- Custom-optimized Solutions
- State-of-the-art technology

Global Market Share

Leading Global Hydrogen Technology and Plant Supplier

- Global Hydrogen (H₂) demand projections
- Ways to enhance H₂ Availability
 - Advanced Hydrogen Management
 - Step capacity Revamping & Feed switching to NG
 - Mega H₂ concept
 - Make v/s Buy
 - Reliability Enhancement
- Conclusions

Refinery Off Gas (ROG) H₂ Recovery and Utilization

Advanced Hydrogen Management

- Specific methodologies combined with transversal competences
 - Advanced LP programming using PIMS platform
 - Suite of tools includes H₂-pinch analysis and purity / pressure cascading
 - Rigorous unit operation modelling simulator, data import and reconciliation
 - Global cost database for realistic economic analysis and case evaluation
- Tailored to specific objective functions for grassroot refineries as well as revamps, expansions & retrofits of existing refineries
- No compromise on safety, reliability and operational flexibility

HyN-DT Analysis Cluster Output

Default

HYDROGEN BALANCE

SYNGAS DISTRIBUTION

USERS	Mass Rate	Nm3/h	Sweet Syngas distribution	T/Day	DEFAULT SPLIT			
H2 for Naphtha HDT	6.39 t/d	2985 Nm3/h	Feeds		%	%	% wt	
H2 for Kero HDS	2.25 t/d	1052 Nm3/h	Sweet Syngas to Power	2943.0 t/d	52.65	52.65	52.65%	
H2 for Diesel HDS	17.12 t/d	7994 Nm3/h	Sweet Syngas to Hydrogen	2646.3 t/d	47.35	47.35	47.35%	4 🕨
H2 for Hydrocracker	508.22 t/d	237297 Nm3/h	Sweet Syngas to Fuels	0.0 t/d	0.00	0.00	0.00%	4 >
H2 for ARO Complex	17.00 t/d	7936 Nm3/h	Tot	5589 <i>.</i> 3 t/d		100.00	100.00%	
Tot	551.0 t/d	257264 Nm3/h						
PRODUCERS	Mass Rate	Nm3/h	REFINERY FUELS BALANC	E				
CCR-H2 (High purity)	-151.93 t/d	-70937 Nm3/h				_		
H2 from Gasification	-241.96 t/d	-112977 Nm3/h	REFINERY ENERGY BALANCE					
HC-H2 PSA	-38.86 t/d	-18146 Nm3/h	REFINERY FUELS AVAILABILITY	MMKcal/h	503.24	1		
Hydrogen Generation Unit	-118.23 t/d	-55204 Nm3/h	REFINERY FUELS DEMAND	MMKcal/h	755.84			
Tot	-551.0 t/d	-257264 Nm3/h	DELTA (+import/-excess)	MMKcal/h	252.60			
			FUELS IMPORT	LHV				
Hydrogen Unbalance	0.0 t/d	0.0 Nm3/h	Feeds	Kcal/Kg	T/Day MMKcal/h	L		
(+/-; shortage/overproduction)		STOP BLINK	NATURAL GAS	11700.00	518.16 t/d 252.60			
			Fuel Oil M 100	10680.00				
Naphtha Warning	_		FUELS EXPORT	LHV	OTHERS			
NO SHORTAGE			Feeds	Kcal/Kg	T/Day MMKcal/h	L		
		<	Refinery Fuel gas (flare)	12464.55	0.00 t/d 0.00			
			Fuel Oil M 100	10680.00	0.00 t/d 0.00			

HyN•**DT**TM Example Analysis : Base Case

HyN•DT[™] Analysis : Optimized Select Case

Refinery Off gases (ROG) Integration

NEW DELHI, INDIA | 9-11 JULY

- Global Hydrogen (H₂) demand projections
- Ways to enhance H₂ Availability
 - Advanced Hydrogen Management
 - Step capacity Revamping & Feed switching to NG
 - Mega H₂ concept
 - Make v/s Buy
 - Reliability Enhancement
- Conclusions

Hydrogen Step Capacity Revamp

Benefits

- Lower unit cost of (additional) hydrogen
- Shorter schedule
- No or smaller additional plot space
- Utility interfaces and staff in place

• Process Options

- Pre-reformer integration (up to 10%)
- Reformer upgrade (up to 15%)

TPR reformer retrofit

Attractive additional Hydrogen with No compromise on HSE and Reliability

HPIRPC.com

(up to 30%)

Technip Parallel Reformer (TPR) Retrofit

- Uses high grade heat of reformer effluent to reform additional feed
- More reforming without increasing radiant duty, thus lowering firing and related CO₂ per unit H₂
- Off-loads the whole steam system despite higher capacity
- Allows near 'Zero' export steam
- Installation within a typical refinery turnaround (4-6 weeks)

TPR Regenerative Reforming Cycle

- Up to 30% more H₂
 Lower Export Steam
- Lower corrected Specific CO₂ Emission

Recent TPR Revamps Overview

	Project 1	Project 2	Project 3	Project 4	Project 5
Start-up	2003	2009	2010	2010	2012
Pre-revamp capacity (kNm3/h)	13.5	34	16.5	38	96
Incremental capacity (kNm3/h)	3.4	9	5	9	21
Capacity increase (%)	25	26	30	24	22
Feedstock	Naphtha/ NG	Naphtha	NG	NG	NG

Feed Switching (from Naphtha) to NG

- Expanding NG networks
- Higher H2 yield due and improved process efficiency
- NG feed Opex generally lower than for Naphtha, when latter credits higher premium as Petrochemicals feedstock
- Reduced CO₂ emission (~ 15%)
- Easier to operate (even more with fuel substitution)
 - No residue on evaporation / fouling
 - Easier desulphurization
 - No liquid pockets or slugs , esp during transient conditions
 - Reduced risk on carbon formation in SMR even with lower S/C
 - More stable composition and quality
 - Easier to recover from upsets
- On-line feed change-over well referenced (as alternative and/or mixed feed)

- Global Hydrogen (H2) demand projections
- Ways to enhance H₂ Availability
 - Advanced Hydrogen Management
 - Step capacity Revamping & Feed switching to NG
 - Mega H₂ concept
 - Make v/s Buy
 - Reliability Enhancement
- Conclusions

Hydrogen Generation : Economy of Scale

Benefits of Single v/s Dual Train H₂ Plant

- Total Installed Cost lowered by 10-15%
- Smaller plot space by 30-50%
- Enhanced energy efficiencies, apart from better justification for incremental investment
- Shorter implementation schedule and/or labor intensity
- Lower operating costs (staff, inventories and capital spares)
- More suitable for CO₂ capture readiness
- Such merits outweigh the minor benefit on lower turn-down and plant availability of Dual-train units, with negligible impact on overall onstream factor.
- Dual train configuration at times gets governed by phased investment and execution philosophy or case-specific requirements
- Large single-train H₂ plants do call for a higher degree of design optimization and competence as well as EPC capabilities and experience.

Mega Hydrogen Plants with Feed Flexibility

- Global Hydrogen (H₂) demand projections
- Ways to enhance H₂ Availability
 - Advanced Hydrogen Management
 - Step capacity Revamping & Feed switching to NG
 - Mega H₂ concept
 - Make v/s Buy
 - Reliability Enhancement
- Conclusions

Hydrogen supply : Make v/s Buy

	Make Case	Buy Case
Key design objective	Low capital cost	Optimized UCH
Financing & insurance	Customer	Supplier
Project / construction risk	Customer / Contractor	Supplier
Permitting & commissioning	Customer	Supplier
Warranty	Typically 1 yr after 'start up'	20 years
Performance guarantee	GTR within 2-12 months	20 years
On-stream guarantee	None	20 years
Opex liabilities	None	20 years
Major failure after warranty	None	20 years

Air Products- Technip Global H₂ Alliance

- Incepted in 1992
- Befitting Synergy
 - Technip's leadership in H₂ plant supply
 - Air Products' leadership in OTF H₂ supply
- 34 plants to date
 - > 2.5 bcfd H₂ capacity
 > 1 bcfd H₂ in past 5 years

Longest and most successful Sale-of-Gas H₂ alliance

GTE - SMR Cogen Integration / Combined Cycle

Benefits of SMR / Cogen Integration

- Better Economics compared to standalone units
 - Lower TIC by ~ 10%
 - O & M staffing synergies benefit ~ 5%
 - Improved thermal efficiency benefit ~ 3 %
- Reduced specific CO_2 and NOx by ~ 15%
- Island mode capabilities during special operational modes
 - Enhanced reliability for H₂ (>99.9%) as well as power supply for the refinery complex under various H2 / power load ratios
- Upto 100 MW generation from 100 mmscfd H₂ plant
- Reliable and cost-effective (captive) power self-sufficiency

Global H2 demand projections

- Ways to enhance H₂ Availability
 - Advanced Hydrogen Management
 - Step capacity Revamping & Feed switching to NG
 - Mega H2 concept
 - Make v/s Buy
 - Reliability Enhancement
- Conclusions

Air Products-Technip Reliability Program

- Reliability Focused Operations and Work Processes
 - Global Downtime and Cost of Non-conformance (CoNC) metrics
 - Advanced Model Predictive Control (MPC) control strategies
 - State of the art Condition Monitoring (CM)
 - Standardized outage planning and execution
 - Critical Spares management
 - Robust Electronic Management of Change (MOC) system
 - Best Practices sharing amongst sites worldwide
 - Extensive use of Continuous Improvement Tools
 - Site Reliability, Training, and Procedure Assessment Programs in place

On-Stream Reliability of AP-TP Large H₂ plants

	Start-up Year	Capacity MMSCFD	% On-stream *
Unplanned Downtime Events / Plant (<u>> 60 MMSCFD plants</u>)	1994	35	99.1
5.00	1995	88	99.3
4.50	1996	80	99.1
4.00	1997	17.5	99.2
3.50	2000	96	99.6
2.67	2002	100	99.9
2.50	2004	110	99.8
	2006	82	99.9
1.00	2007	115	99.9+
0.50	2008	105	99.9+
0.00 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009	2011	120	100.0 to date

* Based on documented reliability data of AP-TP SOG H₂ plants, excluding scheduled outage

Progression of "Cost-Effective Reliability"

		Early 90s	Mid 90s	2005 +
Single (SMR) train max. H ₂ capacity, mm	nscfd	75	100	200
Relative Reformer box size (m x m x m),	%	100	85	75
Relative Specific energy (GJ/kNm3),	%	100	94	90
Relative Burner-NOx target (ppmV),	%	100	65	30
Continuous operation / turnaround cycle,	years	~ 2	~ 3	~ 4
Reliability (stand-alone on-stream)	%	> 95 %	> 97 %	> 99 %
Relative Plot area ISBL (m x m),	%	100	90	75
Relative EPC execution schedule (months),	%	100	90	80
Relative TIC (ISBL; adjusted NPV; MM \$),	%	100	95	85
Relative 'Unit Cost of Hydrogen' (\$/kNm ³),	%	100 %	94 %	88 %

- Global Hydrogen (H₂) demand projections
- Ways to enhance H₂ Availability
 - Advanced Hydrogen Management
 - Step capacity Revamping & Feed switching to NG
 - Mega H₂ concept
 - Make v/s Buy
 - Reliability Enhancement
- Conclusions

Conclusions

- The growing refining landscape and its emerging needs, especially in Asia, call for concerted strategies for ensuring H₂ availability efficiently and cost-effectively.
- In modern high-conversion integrated refineries, H₂ need can be satisfied starting with judicious hydrogen management, followed by potential capacity revamp of existing H₂ plants, and eventually efficient & reliable H₂ generation, furthered by 'buy' mode via overthe-fence supply.
- Asian refining and hydrogen markets carry few specific trends and needs to be addressed for meeting the ongoing and future goals.
- Technip as a global leader for supply of H₂ technology and plants, together with its trend-setting global alliance with Air Products, carries a comprehensive portfolio of proven technological options and advanced solutions for satisfying current and upcoming H₂ needs.

Thank You !

sratan@technip.com

take it further.

pateInm@airproducts.com

